

EMC solutions

A strong national and international presence

Contents

ELECTROMAGNETIC **INTERFERENCE IN INDUSTRY**

TITLE	Page
Disturbances and solutions	4

1

PROCESSING ENERGY QUALITY

TITLE	Page
Introduction	22
Measuring devices	23
Measuring devices	24
Energy quality monitoring	25
Capacitor banks	26

PROCESSING ELECTROMAGNETIC INTERFERENCE

TITLE	Page
Introduction	6
Shielding continuity	7
Cable glands	8
Enclosures	9
Cable protection system	10
Cable protection system	11

PROCESSING HARMONICS

TITLE	Page
Processing harmonics in variable frequency	
drive environments	12
Filtration of low-frequency harmonics	13
Filtration of high-frequency harmonics 150 kHz - 30 MHz.	14
dV/dt sine wave filter and reactor for motor protection	15

PROCESSING LEAKAGE CURRENTS AND ISOLATION

TITLE	Page
Introduction	16
DIRIS Digiware	17
Insulating cable tray	18
Electrical installation safety and clamp meters	19
High-efficiency isolation transformer	20
Residual current device	21

PROCESSING LIGHTNING AND OVERVOLTAGE

TITLE

TITLE P	Page
Introduction	27
Energy network protection	28
Protection of process installations	29
Processing lightning and overvoltage with UPS (Uninterruptil Power Supply)	

APPENDICES

TITLE

THE	Page
EMC approach	32
Electromagnetic interference propagation	33
Shielding connection technique	34
Passive components for a perfect ECM installation	35
Wiring components and static electricity dissipation	
ECM filter technical information	37
High-efficiency transformer questionnaire	
Cosys sizing assistance	

Dogo

ELECTROMAGNETIC INTERFERENCE IN INDUSTRY

Disturbances and solutions

ELECTROMAGNETIC INTERFERENCE IN INDUSTRY

Simulation performed by our robotics teams

Lightning & overvoltage

EMC, a crucial element for 4.0 industry

- > More sensitive electronics
- > More interference
- > **More** centralised integration
- > More hard-wired and radio communication

The problems are:

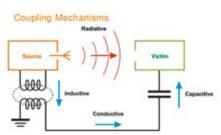
- > Communication faults
- > Random failures on your systems
- > Premature **ageing** of sensitive electronics
- > Network **overvoltage**
- > Energy quality

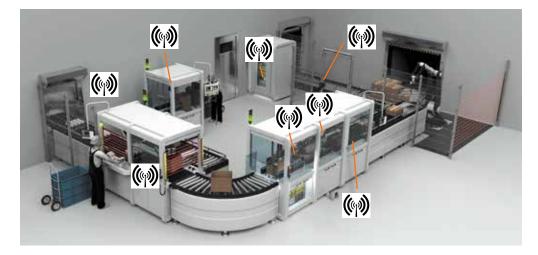
PROCESSING ELECTROMAGNETIC INTERFERENCE

Introduction

A large number of signal interactions are present in the industrial electromagnetic environment:

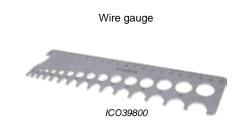
- power supply and motorisation


- automation


- instrumentation

data networks

E.M.C. constraints need to be addressed, bearing in mind that installations develop technically over time.

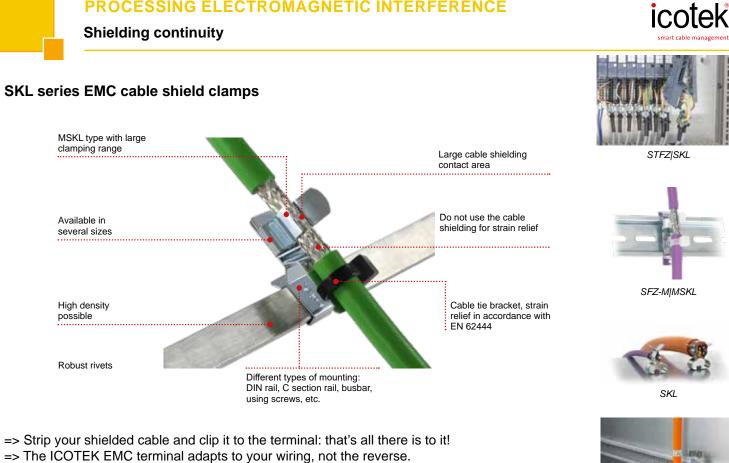

This means upgrading the electromagnetic interference mitigation measures used on the source of the interference and the victims, whilst providing adapted wiring solutions.

Grouping together cables of different families increases the risk of interference on sensitive equipment. Most cables are **shielded** and shielding coverage is not sufficient to eliminate interference.

Innovative shielding continuity solutions exist to protect sensitive installations.

Practical tips:

Shielding on cables must be bonded over 360° at both ends and on an equipotential ground plane for high frequencies.



Measurement signal shielding

Motor cable shielding

See page 34 for shield bonding theory.

PROCESSING ELECTROMAGNETIC INTERFERENCE

Contact area on shielding up to 50% greater than conventional shielding systems.

CEM-KT (5) EMV-KVT-DS EMV-KEL: Sealing and EMC! EMC-KVT ng absorbtion (linked to sh ng at ed to sh dina' Attenuation performance on conducted and radiated electromagnetic interference

Frequency (MHz)

=> Route all your cables already fitted with connectors directly into your enclosures!

=> Sealing and shielding continuity in a single operation.

EMC cord and cable entry system

CEM-KE

the application of the application of the sector of the se

Frequency (MHz)

Cable glands

We propose two ranges from our cable gland solutions:

easyCONNECT for all network or automation cables powerCONNECT for power cables

easyCONNECT cable glands: Nickel-plated brass with contact spring

L = Short metric connection thread $L^* =$ Long metric connection thread

Reference	L	Reference*	L*	Designation
AGR108317	5	AGR118317	10	M16 x 1.5 easyCONNECT Ø6 to 10.5
AGR108320	6	AGR118320	10	M20 x 1.5 easyCONNECT Ø8 to 15
AGR108325	7	AGR118325	11	M25 x 1.5 easyCONNECT Ø12.5 to 20.5
AGR108332	8	AGR118332	13	M32 x 1.5 easyCONNECT Ø17 to 25.5
AGR108340	8	AGR118340	13	M40 x 1.5 easyCONNECT Ø24 to 33
AGR108350	9	AGR118350	14	M50 x 1.5 easyCONNECT Ø33 to 42
AGR108360	10	AGR118363	14	M63 x 1.5 easyCONNECT Ø40 to 52

Installation film

powerCONNECT cable glands: Nickel-plated brass with advanced compression sleeve

L = Short metric connection thread $L^* =$ Long metric connection thread

Reference	L	Reference*	L*	Designation
AGR108417	5	AGR118417	10	M16 x 1.5 powerCONNECT Ø6 to 10.5
AGR108420	6	AGR118420	10	M20 x 1.5 powerCONNECT Ø8 to 15
AGR108425	7	AGR118425	11	M25 x 1.5 powerCONNECT Ø12.5 to 20.5
AGR108432	8	AGR118432	13	M32 x 1.5 powerCONNECT Ø17 to 25.5
AGR108440	8	AGR118440	13	M40 x 1.5 powerCONNECT Ø24 to 33
AGR108450	9	AGR118450	14	M50 x 1.5 powerCONNECT Ø33 to 42
AGR108463	10	AGR118463	14	M63 x 1.5 powerCONNECT Ø40 to 46
AGR108475	11	AGR118475	15	M75 x 1.5 powerCONNECT Ø50 to 63

Installation film

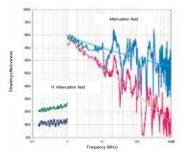
Toothed locknut

Reference	Th.	Designation
AGR801785	3.5	M16 x 1.5 brass EMC locknut
AGR802085	4.0	M20 x 1.5 brass EMC locknut
AGR802585	4.0	M25 x 1.5 brass EMC locknut
AGR803285	5.0	M32 x 1.5 brass EMC locknut
AGR804085	5.3	M40 x 1.5 brass EMC locknut
AGR805085	6.3	M50 x 1.5 brass EMC locknut
AGR806385	7.0	M63 x 1.5 brass EMC locknut

Enclosures

A metal electrical enclosure is not in itself likely to be a victim or a source of interference for its environment. It provides effective protection against electromagnetic interference by its "Faraday cage" effect.

Composition:


- Conductive steel panels and walls
- Galvanised coating on the inside

Sealing against interference:

- "Hole-free" design
- Special conductive seal
- Addition of galvanic separations

Electrical continuity:

- Ensures electrical continuity between the various parts
- Paint-free contact points
- Impedance reduction

nvent

HOFFMAN

We offer a range of floor-mounted metal boxes and cabinets that are EMC-tested to **standard VG 95 373 part 15**, and numerous accessories enabling you to create the best possible EMC solution for your application.

To select the right enclosure, it is necessary to identify the attenuation needed to guarantee the effectiveness of your protection against electromagnetic fields.

Do not hesitate to use our expertise to design your solution

Our EMC enclosure solutions:

One-piece EMC cells and cabinets

19" EMC bays

EMC junction boxes

EMC enclosures

Accessories:

Accessories contribute to industrial E.M.C. state of the art to preserve the initial shielding effectiveness (dB) of the enclosure

EMC filter fan



Conductive seal and HF cable entry system

MAGRE

Anti-static button

Earth shunt – Earthing strap

Shielding continuity on busbar EMC cable gland and cap

Cable protection system

Standard cable protection systems are far from ideal in terms of EMC protection.

For effective protection of your sensitive signals, a cable protection system providing electromagnetic shielding with coverage of over 90% is required.

In addition, adapted bonding of both ends is necessary to maintain the benefits of this solution. Different solutions exist depending on the machine environment and the installation options.

Tinned copper braid conduits:

Good EMC protection, use in cable trays.

Reference	Designation	Int. Ø	Male fitting	EMC nut
PMAFCK10	Screening braid conduit	7 to 12 mm	-	-
PMAFCK125	Screening braid conduit	11 to 13 mm	PMABVEMV-M120-10	PMAGMM-M12
PMAFCK15	Screening braid conduit	13 to 18 mm	PMABVEMV-M162-10 PMABVEMV-M207-10	PMAGMM-M16 PMAGMM-M20
PMAFCK20	Screening braid conduit	16 to 35 mm	PMABVEMV-M253-10	PMAGMM-M25
PMAFCK25	Screening braid conduit	22 to 40 mm	PMABVEMV-M329-13	PMAGMM-M32
PMAFCK30	Screening braid conduit	27 to 44 mm	PMABVEMV-M406-13	PMAGMM-M40

The PMA BVEMV-Mxxx connection kit includes the following parts:

- Male metal connector and braided conduit terminal fitting.
- Plastic fitting with adapter sleeve for any protective corrugated conduit.

Hybrid braid conduits:

Very flexible copper and polyamide braid.

Excellent EMC protection, easy to install, for use near cabinets and on the machine.

Reference	Designation	Int. Ø
PMAFHY10	Screening braid conduit	8 to 13 mm
PMAFHY12	Screening braid conduit	10 to 15 mm
PMAFHY15	Screening braid conduit	12 to 18 mm
PMAFHY20	Screening braid conduit	19 to 27 mm
PMAFHY35	Screening braid conduit	30 to 40 mm

EMC collars must be used to connect this conduit. See page 6.

FCE type MULTITITE conduit: Very flexible, economical conduit providing good mechanical protection

Black conduit, resistant to crushing (1250 N), impacts (6 J) and traction (1000 N)

Thin-wall galvanised steel single-interlock core conduit with corrugated PVC cover, IP67, -20°C to +80°C

Reference	Reference Int. Ø (mm)		Bend radius (mm)	Pack- aging (in m)	Multitite FCE DN (in mm)						
ANA3710102	7	10	30	25	10						
ANA3710122	10	14	37	25	12						
ANA3710162	13	17	45	25	16						
ANA3710202	17	21.5	55	25	20						
ANA3710252	21.2	26	70	25	25						
ANA3710322	28.1	34	95	25	32						
ANA3710402	37.7	45	115	25	40						
ANA3710502	48.4	56	135	25	50						
ANA3200501	51.6	59.9	250	15	2"						

Nickel-plated brass ISO straight fitting. Delivered with ferrule. IP65, -40°C to +105°C

Reference	ISO thread	Max. int. Ø (mm)	Pack- aging	Sealtite EF Ø (in inch- es)
ANA8120122	M12x1.5	5.2	10	1/4"
ANA7120150	M16x1.5	8.3	10	5/16"
ANA7120161	M16x1.5	11	10	3/8"
ANA7120171	M20x1.5	11	10	3/8"
ANA7120201	M20x1.5	14.5	10	1/2"
ANA7120251	M25x1.5	19.4	5	3/4"
ANA7120321	M32x1.5	24.7	5	1"
ANA7120401	M40x1.5	33.3	2	1.1/4"
ANA7120501	M50x1.5	38	2	1.1/2"
ANA7120631	M63x1.5	49	2	2"

SHIELDTITE conduit:

Military qualification, test laboratories

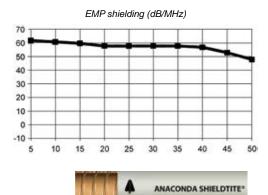
Very robust, double-interlock bronze conduit with smooth PVC cover. Specially designed to protect cables against electromagnetic pulses and interference. Resistant to UV, oil and temperatures up to 105°C.

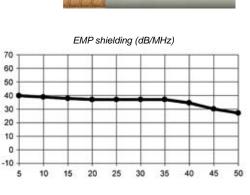
Reference	Designation	Int. Ø	EMC fittings
ANA3040121	3/8" Sealtite conduit	12.6 mm	8126171 M20
ANA3040161	1/2" Sealtite conduit	16 mm	8126221 M25
ANA3040201	3/4" Sealtite conduit	21 mm	8126281 M32
ANA3040261	1" Sealtite conduit	26.5 mm	8126351 M40

Black HTDL conduit: UL/CSA approved machines or equipment

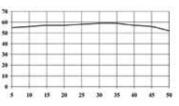
Robust galvanised steel conduit with smooth PVC cover. Shields cables against electromagnetic pulses and interference. Resistant to UV, oil and temperatures up to 105°C

Reference	Designation	Int. Ø	EMC fittings
ANA3300122	3/8" Sealtite conduit	12.6 mm	8126171 M20
ANA3300162	1/2" Sealtite conduit	16 mm	8126221 M25
ANA3300202	3/4" Sealtite conduit	21.1 mm	8126281 M32
ANA3300261	1" Sealtite conduit	26.8 mm	8126351 M40


ANAFLEX conduit: IP69 and high temperatures


Click-fit flexible stainless steel pipe.

IP69 liquid-tight conduit resistant to high temperatures up to 250°C providing high shielding thanks to its construction.


Reference	Designation	Int. Ø
ANA4650121	DN12 conduit	12.2 mm
ANA4650161	DN16 conduit	16.2 mm
ANA4650201	DN20 conduit	20.3 mm
ANA4650251	DN25 conduit	25.4 mm

EMP shielding (dB/MHz)

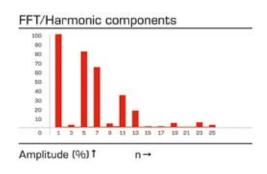
PROCESSING HARMONICS

Processing harmonics in variable frequency drive environments

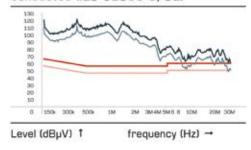
Harmonic currents are caused by non-linear loads (power electronic devices). This leads to pollution in the electricity supply which may cause problems if the sum of the harmonic currents is greater than certain limit values.

In a variable frequency drive environment, there are two forms of harmonic pollution

Low-frequency harmonic pollution THD up to and including the 40th harmonic according to standard EN 61003-2

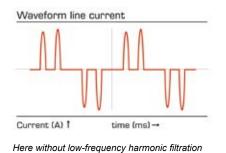

THDi (Total Harmonic Distortion of Current) THDi > 50%: High pollution, malfunctions probable. THDi of 10 to 50%: Significant pollution, harmful effects possible. THDi < 10%: No pollution.

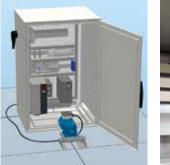
Odd (or uneven) harmonics: 3,5,7,9, 11,13, etc., are the most common in industrial networks.


In practice, a THDi of 30% is tolerable to limit the pollution of equipment and therefore to reduce consumption.

High-frequency harmonic pollution - 150 kHz to 30 MHz

In this frequency range, the reference level is $60 \text{ dB}\mu\text{V}$ Reference limit according to standard EN 61800-3




High frequency emission conducted (IEC 61800-3, C1)

The standardisation of variable frequency drives in industry increases the adverse effects linked to harmonics:

- Network voltage distortion.
- Nuisance tripping of fuses and circuit breakers (differential and magnetic).
- Conductor overheating.
- Premature ageing of electronic equipment (PLCs, power supplies, etc.).
- Energy consumption.
- Interference with sensitive equipment.

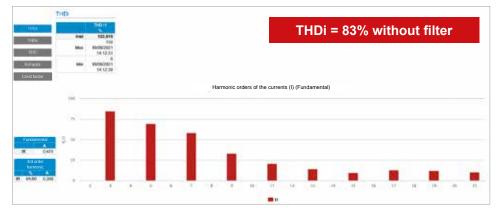
ECM filter technical information on page 37.

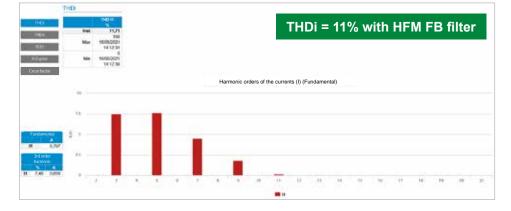
Line reactor to reduce THDi to around 30%*.

Limitation of inrush currents and peak currents Low residual ripple Increased equipment life time

	Electricity supply filtration by line reactor									
Reference	Reference Designation									
BLONKE XX/X.XX	230 VAC or 400 VAC single-phase line reactor	4%	4 to 25 A							
BLOLR3-AXXXX-404-0	400 VAC to 690 VAC three-phase line reactor New 4D mechanical concept based on curved copper-plated aluminium bars*	4%	4 to 900 A							
*	Available with copper winding + standard insulating film with the BLOLR3 40-4/XXX and/or different inductance values for voltage drops of 3% or 5%	3%, 4% or 5%	2 to 1600 A							

* Depending on the initial pollution level.


Harmonic filter to reduce THDi to around 10%*


Increase in the power factor to around 1 at full load Reduction of THDi to <10% Increased equipment life time

Electricity supply filtration by line reactor									
Reference	Designation	THDi at 100% load	Current range						
BLOHF1P X.XX-230	Single-phase harmonic filter voltage range 207 to 253 VAC	< 10%	0.19 to 5.7 kW						
BLOHF1K XXX-400	Three-phase harmonic filter voltage range 360 to 440 VAC	< 8%	5.5 to 90 kW						
BLOHFM-FB XXX-400	Three-phase harmonic filter voltage range 380 to 420 VAC	< 7%	5 to 250 kW						

* Depending on the initial pollution level.

Example case study on variable frequency drive load

The result depends on several criteria concerning the installation.

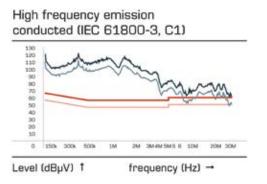
An analysis of the electrical network should preferably be conducted before and after filtration.

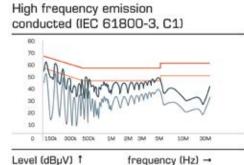
HF1P

13

HF1K

Filtration of high-frequency harmonics 150 kHz – 30 MHz


How to choose the right EMC filter:


- 1. Network voltage: single-phase, three-phase or three-phase + neutral
- Network neutral system: TT, TN or IT 2.
- Acceptable leakage current: issue of differential protection 3.
- Maximum load current 4.
- Length of drive output cables for good attenuation (compliance with standards) 5.

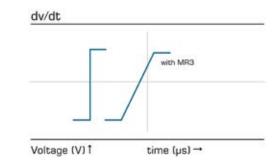
	Selection table with ma	x. cable lengths to gua	rantee filtr	ation levels B (C1) or Class A	A (C2 < 20 kVA)	
Type of power supply	Filter series	Applications	Neutral system	Nominal leakage current (mA)	Current range (A)	Max. cable length (m) class C1	Max. cable length (m) class C2
	BLOHFE 104-230/XX		TN,TT	0.37	1 to 65	not C1	3
	BLOHFE 156-230/XX	Power supply & elec- tronic devices	TN,TT	8	1 to 16	not C1	25
	BLOHFE 200-230/XX		TN,TT	0.4	1 to 16	not C1	25
Single- phase	BLOHLE 110-230/XX	Individual devices,	TN,TT	8.5	4 to 55	25	50
phase	BLOHLE 310-230/XX	frequency converters or all types of device	TN, TT	3	4 to 55	5	10
	BLOHLE 810-230/XX	Specifically for IT networks	IT	0	4 to 55	5	10
	BLOHFD 156-400/XX	Power supply & elec-	TN,TT	1	3 to 16	not C1	25
	BLOHFD 510-500/XXX	tronic devices	TN	43	8 to 180	50	100
	BLOHLD 103-500/ XXXX	Individual devices,	TN	60	270 to 2500	50	100
Three- phase	BLOHLD 110-500/XXX	frequency converters	TN	37	8 to 250	50	100
phase	BLOHLD 310-500/XXX	or all types of device	TN,TT	0.4	8 to 250	5	10
	BLOHLD 710-500/XXX		TN,TT	6	8 to 250	25	50
	BLOHLD 810-500/XXX	Specifically for IT networks	IT	0	8 to 250	5	10
	BLOHFV 510-400/XXX		TN	22	8 to 180	50	100
	BLOHLV 110-500/XXX	Individual devices,	TN	37	8 to 250	50	100
Three- phase	BLOHLV 310-500/XXX	frequency converters or all types of device	TN, TT	1	8 to 250	5	10
+ neutral	BLOHLV 710-500/XXX		TN, TT	7	8 to 250	25	50
	BLOHLV 810-500/XXX	Specifically for IT networks	IT	0	8 to 250	5	10

Important note:

The peak values for EMC filter leakage currents are higher than the nominal values. This must be taken into account when using residual current devices. See Appendix page 37

Level (dBµV) 1

Unfiltered drive input HF signal


Filtered drive input HF signal

PROCESSING HARMONICS

dV/dt sine wave filter and reactor for motor protection

Improvement of interference on the motor line

- A. Cancellation of motor leakage and bearing currents, increased component life time
- B. Less pollution and overheating on the cable. Reduction of electromagnetic interference
- C. Reduction of energy losses: less current consumed and less leakage current
- D. Use of long motor cable lengths, shielded cable no longer necessary to limit interference emissions

BLDEKO

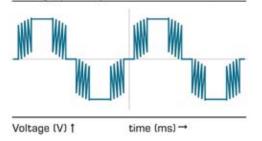
Filtration with motor reactor to reduce dV/dt in differential mode

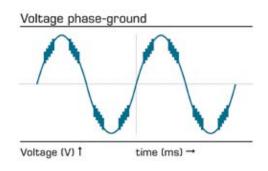
Reduction of the dV/dt, limitation of peak voltages and currents, reduction of motor leakage current

Drive output filtration by motor reactor											
Reference	Designation	Power range	Motor rotation speed	Type of improvement							
BLOMDB 400/XX	3x400 VAC three-phase motor inductance	2.2 x 90 kW	2 to 6 kHz	0 to 120 Hz	В						
BLOMR3 400/XX	3x400 VAC three-phase motor inductance	0.75 x 30 kW	3 to 8 kHz	0 to 50 Hz	В						

Available in other sizes

Filtration with standard sine wave filter (differential mode) and all-pole filter (differential and common mode)


Reduces noise, motor leakage currents and bearing currents (all poles), accepts long, unshielded cables, saves energy (all poles)


SF4 all-pole sine filter

Drive output sine wave filter											
Reference	Designation	Power range	Drive switching frequency	Motor rotation speed	Type of improvement						
BLOSFB 400/XXX	3x500 V standard three-phase sine wave filter	1.5 x 260 kW	4 to 8 kHz	0 to 150 Hz	B, D						
BLOSFA 400/XX	3x500 V all-pole three-phase sine wave filter	0.55 x 30 kW	from 8 kHz	0 to 60 Hz	A, B, C, D						
BLOSF4-CXXX-500-X	3x500 V all-pole three-phase sine wave filter	2.2 x 75 kW	from 4 kHz	0 to 150 Hz	A, B, C, D						

drive output signal phase-phase voltage with motor reactor

drive output signal phase-earth voltage with SF4 filter

Saving of approximately 6.6% in energy consumption with an all-pole sine wave filter All-pole sine wave filters provide variable active energy savings depending on the components

PROCESSING LEAKAGE CURRENTS AND ISOLATION

Introduction

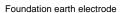
		50) mA no	n-complia	ant	C.P.
						(14)
30 mA comp	oliant					- 10
and the second	Jun - war	mapp	firm	-	inv	EL PRESS LEAKAGE CURRENT JA
						41
						44
						45
Name of Street	100.000	-	Service .	Appendix of	And other Street of Street	1

The modernisation of electrical installations leads to an increase in leakage currents. These leakage currents are created by parasitic capacitance caused by power electronics (e.g. variable frequency drives).

This may adversely affect the proper functioning of the installation by nuisance tripping, interference on sensitive equipment and premature wear of motor bearings caused by bearing currents.

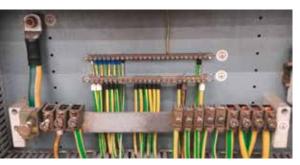
In EMC, the rule is that all exposed conductive metal parts must be interconnected and connected to the earth.

A **meshed** bonding network allows the parasitic currents (known as common mode currents) linked to electromagnetic interference to be better distributed.


The common mode parasitic currents loop via the conductive metal parts.

It is a well-known fact that these currents always follow the path of least resistance.

Different earthing rules may be imposed according to the risk considered. This is the case for **ATEX** environments, in which the risk of sparks must be controlled, and **lightning**, in which the risk of a difference in potential must be avoided.


In EMC, a specific requirement is given for the management of earthing and bonding.

Electrical and mechanical continuity

Earth connection to protect people and property

Bonding conductor to manage interference currents generated by the drive

L1

L2

L3

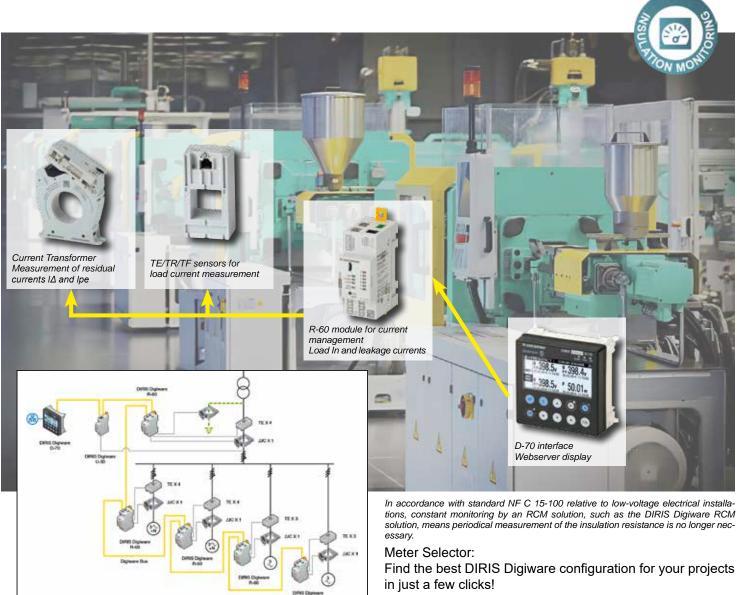
N

PE

DIRIS Digiware

Earth leakage currents are known as residual currents.

Depending on the earthing system (neutral system), various problems may be encountered such as differential tripping or insulation faults.



Residual currents are composed of a capacitive part and a resistive part.

Capacitive currents which are of electronic origin can generate nuisance tripping without the installation having any electrical faults.

Resistive currents are created by insulation faults between the phase and earth voltages.

The **DIRIS Digiware RCM** smart measurement solution pools residual current and load current monitoring to anticipate insulation faults before protection devices trip.

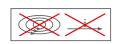
https://meter-selector.com/#/FR/home

PROCESSING LEAKAGE CURRENTS AND ISOLATION

Insulating cable tray

Insulating cable tray 66

Improved installation by the use of Unex insulating cable trays


Second Se

In many industrial contexts, managing electromagnetic interference can be complicated, as multiple factors must be taken into account. As the Unex cable tray is insulating and unaffected by electromagnetic sources, it simplifies the issue and helps to implement EMC rules:

- It does not create interference (no creation of unwanted loops, no antenna effect and no induction on the material)
- It does not propagate conducted interference
- and it does not amplify interference in an electrical installation (energy/data/instrumentation)

		e		à	54			L Der	_ = = =		e e	္မွ်င္ Lev မွ Chai		vel nge	<u>.</u>	Bracket		Steel bracket	
H (mm)	W (mm)	Perforated Base	Continuous Base	Cover	Junction + 2 bolts	Divi	ders	Flat corner 90°	Fla corn cover	Cover	Joint cover piece	Corner junction 4	Convex	Concave	Hinge	Horiz	Vert.	Epoxy	Sendzimir
		>					Į	•	-100	-	$\widehat{\boldsymbol{\zeta}}_{j}$	ſſ	P	J	F		1	Ļ	
	75	66090	66091	66072		-		66060	66061	66093	66094					66103	66075	66106	66107
	100	66100	66101	66102			-	66110	66111	66113	66114	66841 66842	6842 66843 6681		66103	66155	00100	00107	
60	150	66150	66151	66152	66824		66826	66160	66161	66163	66164			66813	66153	66155	66206	66207	
00	200	66200	66201	66202	00024	66821		66210	66211	66213	66214			00013	66203	66205	00200	00207	
	300	66300	66301	66302				66310	66311	66313	66314				66303	66305	66306	66307	
	400	66400	66401	66402				66410	66411	66413	66414					66403	66405	-	-
	200	66220	66221	66202				66230	66211	66233	66234					66203	66205		
	300	66320	66321	66302				66330	66311	66333	66334					66323	66305		
100	400	66420	66421	66402	66834	66831	66836	66430	66411	66433	66434	66851	66852	66853	66833	66403	66405	-	-
	500	66520	66521	66502				66530	66511	66533	66534					66503	66605		
	600	66620	66621	66602				66630	66611	66633	66634					66603	66605		

For ETN references, add the prefix: UNX

Simplification of earthing systems. No leakage currents in the cable trays. Surface resistance > than 108 Ω Dielectric strength: 18±5 kV/mm

No antenna effect by the creation of fields.

Limitation of self-induction effects.

Simplified implementation and electrical safety.

Benefits for the customer:

The Unex solution reinforces the electrical safety of your installation and its longevity, even in corrosive or chemically harsh environments, both indoors and outdoors. The Unex solution simplifies EMC management of cable trays and reduces implementation and maintenance costs.

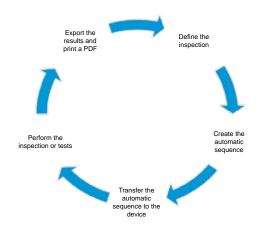
Electrical installation safety and clamp meters

Machine and Installation meters

To guarantee the safety of people and property whilst at the same time avoiding the costs incurred by production downtime, your new and renovated electrical installations need to be regularly inspected.

We offer a range of devices used to perform measurements in compliance with the standards currently applicable (IEC/EN 60204 Ed.6, NF C 15-100, VDE 701/702, etc.).

The benefit of a clear, intuitive interface with illustrations showing the connections makes it quick for operators to master.



Machine meter reference	MI3325	MI3394EU	MI3360	MW9665	Installation meter reference
5000 VAC dielectric test	yes	yes	no	yes	Earth measurement with rods
6000 VDC dielectric test	no	yes	no	yes	Earth loop testing
Continuity test with 25 A	yes	yes	yes	yes	Continuity test with 25 A
Insulation test	yes	yes	yes	yes	Insulation measurement
Leakage current	yes	yes	yes	yes	Differential circuit breaker test
Customisable sequences	yes	yes	yes	yes	Customisable sequences
Communication	USB/LAN/ BLUETOOTH	USB/LAN/ BLUETOOTH	USB/LAN/ BLUETOOTH	USB/ BLUETOOTH	Communication
RENTAL/DEMONSTRATION	yes			yes	RENTAL/DEMONSTRATION

Processing software

The STANDARD version delivered with the device can be used to import your results and create a report.

The optional PRO ES Manager version (ref.P1101) allows you to configure or create manual and automatic test sequences, export them to the device and generate a full report of your measurements. It is also available on tablet or smartphone with an ANDROID version (ref.P1102).

Diett		Cartherton		
Dert's representative.		matter		-
Markine Sound response		8		
Notane Send No. Report Statem	Serie the D	. Net	f action In accordance with	
0 E	1	80		
Measuring settlements Bringer Sector Paul	rest Proof	_	(b)(b)(
Attichenetic City	and the	and the paper with	- Hiled	id Otto
	holy burg () Tartin			

Earth leakage current

We have a solution to measure parasitic currents generated by the power electronics of your installation (starter, drive, lighting, etc.).

PROCESSING LEAKAGE CURRENTS AND ISOLATION

High-efficiency isolation transformer

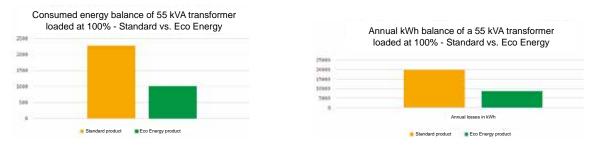
EMC performance

All transformers are composed of separate windings and have galvanic insulation.

There are various practices:

- Galvanic insulation: main insulation, also available in reinforced insulation, double insulation or more
- Change of neutral system
- Adaptation of the voltage and frequency of the LV network
- Harmonic pollution filtration

The transformer and harmonic pollution


The transformer **acts as a natural harmonics filter** thanks to its inductive effect.

The addition of an electrostatic screen (Conductive metal sheet placed between the primary and secondary windings and connected to the earth) evacuates parasitic currents to the earth.

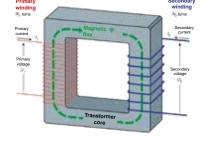
Energy efficiency: ECO ENERGY high-efficiency transformers

In terms of energy saving, a transformer is a source of overconsumption which is often not taken into account in an energy balance.

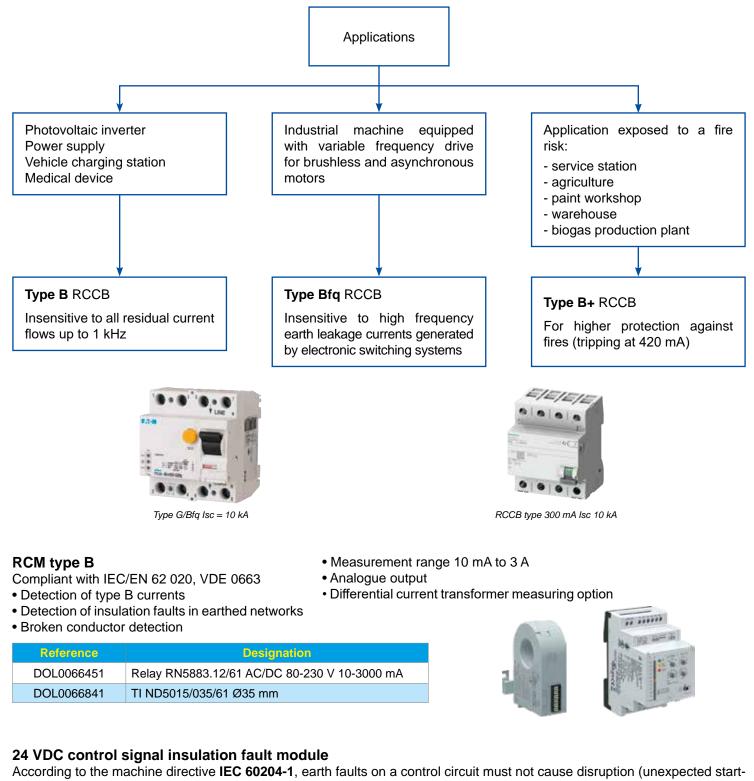
The arrival of high-efficiency transformers means a significant saving can be made.

Reference table

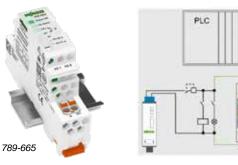
Power kVA with 400 VAC	ECO ENERGY OPEN FRAME single screen ref.	ECO ENERGY COVERED single screen ref.
16 kVA	7T163-TN-Y897 400V D / EC / 400V Y+N	7T163-AB-Y898 400V D / EC / 400V Y+N
20 kVA	7T203-TN-Y900 400V D / EC / 400V Y+N	7T203-AB-Y901 400V D / EC / 400V Y+N
40 kVA	7T403-TN-Y902 400V D / EC / 400V Y+N	7T403-AB-Y903 400V D / EC / 400V Y+N
50 kVA	7T503-TN-Y904 400V D / EC / 400V Y+N	7T503-AB-Y905 400V D / EC / 400V Y+N


Other powers and voltages available

Custom-built transformer questionnaire see page 38



PROCESSING LEAKAGE CURRENTS AND ISOLATION


Residual current device

Type B, Bfq and B+ RCDs for machines and electric drive systems

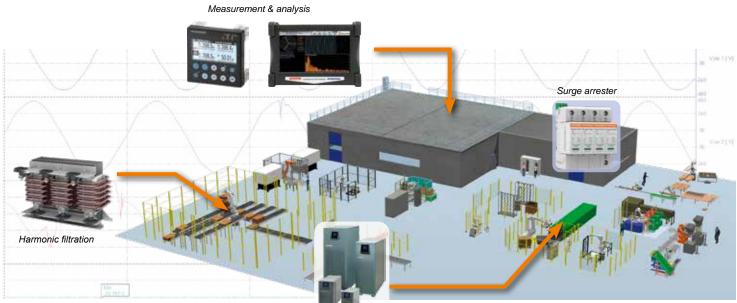
up, potentially dangerous movements, etc.).

- Immediate disconnection of the fuse in case of an earth fault immediate stoppage of a machine
- Automatic test routine. Verification of earth insulation resistance every 10 seconds
- Early warning of earth faults by LED and "Iso OK" contact

PROCESSING ENERGY QUALITY

Introduction

Controlling the quality of the voltage on electrical distribution networks is a vital asset for companies.


Electrical disturbance can paralyse the production tool:

- interference on computer, automation and robotic equipment,
- limited life time on variable frequency drive equipment and asynchronous motors.

Electrical disturbance can impact the company's energy efficiency:

- appearance of distorting power by harmonic pollution,
- functional failure on LED lighting,
- abnormal behaviour and wear on reactive energy compensation systems.

There are effective measurement techniques and solutions to limit these issues.

UPS & stabiliser

The calculation algorithms built into modern measurement tools are capable of capturing voltage quality phenomena in accordance with standard EN 50160.

This standard defines all the electrical disturbance criteria which may impair voltage quality.

Example on a 230 VAC network - sample of measurements over a 7-day period.

Frequency	Classification of the fundamental frequency measured over 10 seconds (f10s) \rightarrow 47 – 52 Hz
Voltage variation	Root mean square value (Urms) on 1 min sample \rightarrow 195.50 – 253.00 V
Flicker	Long-term flicker perceptibility (Plt) linked to voltage fluctuation \rightarrow Plt < 1
Harmonic distortion	Root mean square value of the harmonic distortion (max. 40th harmonic) \rightarrow THDu < 8%
Overvoltage	Classification of overvoltages u% according to the maximum voltage and duration \rightarrow example: u > 120% (duration in ms)
Dips	Classification of the number of voltage dips \rightarrow e.g. nbr: 90 > U% ≥ 80 for 10 ≤ t ms ≤ 200
Swells	Classification of the number of voltage swells \rightarrow e.g. nbr: 120 > U% > 110 for 10 ≤ t ms ≤ 500

PROCESSING ENERGY QUALITY

Measuring devices

There is a range of measuring instruments to perform a clear, accurate diagnosis of your installation in order to identify the sources of disturbance from an energy quality point of view.

Energy and electrical network quality analysers

This range of devices can perform all measurements in any neutral system (TT, TN (C/S) and IT). These products use an intuitive graphic interface to simplify measurements.

- Measurement of TRMS voltage, current, frequency, cos Φ
- Apparent, active and reactive power
- Measurement on single-phase, three-phase and four-phase systems
- 4 voltage inputs/4 current inputs
- · Harmonics analysis up to the 50th harmonic
- Power analysis for VFD*
- · Inrush current, flicker measurement
- USB interface, Ethernet and RS232
- Verification of compliance in accordance with standard EN 50160
- 8 GB of memory (USB card up to 32 GB)
- Colour screen
- Dimensions: 230 x 140 x 80 mm
- Safety: 1000 V CAT III and 600 V CAT IV

* VFD (Variable Frequency Drive): function designed to perform measurements on variable frequency drives where the motor speed is controlled by the change of frequency.

References	Technical characteristics	
SEFMW9685B	IEC 61000-4-30 class S *** Measurement on 50/60 Hz networks	
SEFMW9690B	IEC 61000-4-30 class A ** Measurement on 50/60/400 Hz networks Recording of waveforms and transients	Re mea

** class A: applications requiring precise measurements in compliance with the standards.

*** class S: statistics applications, similar result to class A but with less demanding requirements.

Once these measurements have been performed, the data recorded must be analysed.

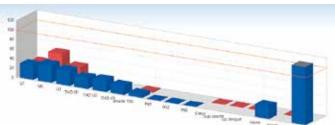
Technical characteristics

Kit of 4 flex clips - length 25 cm and Ø7 cm

The PowerView software application delivered free of charge with SEFRAM energy analysers is used to analyse the recorded data in order to create a report in accordance with standard EN 50160.

probes, crocodile clips, measuring leads, PowerView software, RS232 and USB cables, mains adapter, mini SD card adapter, 6 rechargeable batteries, bag and user manual.

Supplied as options:


References

SEFS2094

SEFS2096	Kit of 4 flex clips – length 48 cm and Ø14 cm
SEFS2098	Kit of 4 flex clips – length 90 cm and Ø27 cm
MUL66950921	Magnetic adapter XMA-7L black
MUL66950923	Magnetic adapter XMA-7L blue

Other accessories: consult us.

Measuring devices

Data acquisition systems

This range of autonomous portable recorders is designed for the acquisition of data concerning all **electrical disturbance** phenomena. The user interface becomes interactive with its colour touchscreen.

- 6 isolated analogue channels
- Universal inputs
- 2 PT100/PT1000 channels
- 16 logical channels
- Network analysis function
 - Current, voltage, frequency
 - Apparent, active and reactive power & power factor
 - Harmonics up to the 50th harmonic
 - Oscilloscope mode
 - Fresnel diagram
- Inrush mode with hysteresis
- Measurements on PWM signals
- 100 kHz bandwidth
- Max. sampling rate: 1 Mech./sec per channel
- USB interface, Ethernet, WIFI option
- 64 GB internal hard drive
- Autonomy up to 9 hours and 30 minutes
- Dimensions: 295 x 210 x 121 mm
- Safety: IEC 1010 600 V CAT III

Several versions possible on request.

Reference

SEFDAS60

The SEFDAS60 recorder has a high sampling rate of up to 1 MHz. In comparison, the SEFMW9690B analyser goes up to 5 kHz.

Other applications already created

- Verification of proper sensor functioning
- Temperature control in a heating process
- Analysis of a battery charging and discharging time (renewable energy)

Software An activation key for the FlexPro View OEM software

is included in the purchase of this recorder.

- Short circuit test for a high-speed line (railway)
- Data acquisition over a long period to discover the source of problems
- Analysis of electrical network disturbances
- Datalogger for multiple current measurements
- Remote measurement of PLC data
- Checking of current consumption
- and an infinite number of applications

DAS 60 presentation video

Supplied as options:

Flexible current clamp SEFA1587

and many other accessories.

Energy quality monitoring

Checking energy quality in 3 steps

A smart, modern measuring system can highlight issues relating to voltage quality and harmonic pollution and therefore reveal any impact on the energy efficiency and sizing of the installation.

Step 1

Step 2

cuts

Accurately monitor the quality and availability of the electrical network at the point of entry into the installations

Be informed of any drift, power cuts, voltage dips and peaks

Be informed of total harmonic pollution and imbalances

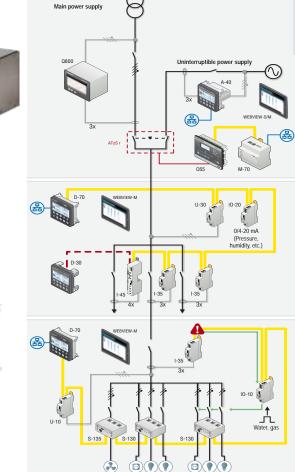
Drafting of reports in accordance with standard EN 50160 allowing the quality of the energy delivered by the supplier to be checked

Analyse harmonic pollution in real time and check

Monitor harmonic pollution to assess the impact and

Guarantee that the installation (transformer, breaking equipment, cables) is correctly sized to avoid power

Real-time monitoring of the plant's consumption


the proper sizing of the installation

establish the source of the disturbance

DIRIS Q800

DIRIS D-70

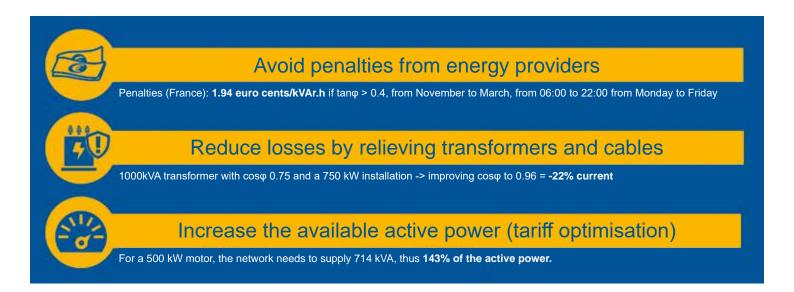
Step 3

Analyse disturbance of electrical origin as close to the process as possible

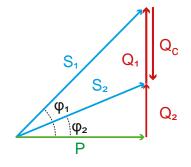
Accurately identify the disrupted loads and the disruptive elements (variable frequency drive motor starter, lighting, IT, HVAC, etc.)

Monitor the impact of load peaks (motor start-up, current overload, voltage dips)

State of the equipment's energy efficiency



DIRIS A-40



PROCESSING ENERGY QUALITY

Capacitor banks

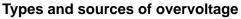
The purpose of a capacitor bank is to reduce the capacitive reactive power Qc and bring the power factor ($\cos \phi$) as close as possible to 1.

Qc = capacitor reactive power Q1 = reduced reactive power Q2 = remaining reactive power SOCO

The COSYS PFC models reduce the current flowing through the battery, thereby enabling the battery to be preserved for longer.

			Overloads	Depollution	Advantages
- Traunsa		PFC 21		No	
	Fixed 10 to 100 kVAr at 400 VAC	PFC 22	2 In (high-efficiency capac- itors)	189 Hz	Compact size Robustness
	Auto 17.5 to 900 kVAr at 400 VAC	PFC 40	1.5 In (reinforced capacitors)	No	\wedge
		PFC 41	2 In	No	Patented regulation
		PFC 42		189 Hz	
		PFC 43	(high-efficiency capac- itors)	1839 Hz	E
		PFC 44		210 Hz	Plug and Play
	Static 100 to 600 kVAr at 400 VAC	PFC 62	2 In (high-efficiency capac- itors)	189 Hz	Ideal for rapid fluctuations

The sizing of a capacitor bank in industry involves a dimensional study. (see page 39 for the sizing formula).

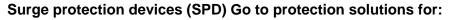

PROCESSING LIGHTNING AND OVERVOLTAGE

Introduction

What is overvoltage?

Overvoltage is a surplus of electrical energy which can reach tens of kilovolts over periods lasting around a micro-second. Despite the short duration, the high energy content can cause serious problems for the equipment connected to the line, such as premature ageing of the electronic components, equipment failure or service interruptions and financial loss.

Overvoltage can be classed in two categories,


- Direct overvoltage (conduction). This is caused by a direct lightning strike on an installation.
- Indirect overvoltage (induction). This is caused by network disturbance (switching operations) and close lightning strikes where the current flow induces overvoltage on the power lines or other metal conductors

According to standard IEC 61643-12, these overvoltages can be listed in the form of shock waves, 10/350 μs for a direct hit and 8/20 μs for an indirect hit.

An overvoltage protection device acts like a voltage-controlled switch. It is fitted between the active conductors and the earth in parallel to the equipment to be protected. When the supply voltage is less than its activation voltage, the protection device acts as a high-impedance element so that no current flows through it.

When the supply voltage is higher than the activation voltage, the protection device acts as an impedance element close to zero, diverting the overvoltage to the earth and preventing it from affecting the equipment downstream.

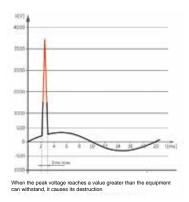
Type 1 / Class I

Ability to discharge lightning currents (10/350 µs). For incoming power supply panels of installations provided with external lightning rods and/or at high risk of direct lightning strikes. IEC 61643-11.

Type 1+2 / Class I+II

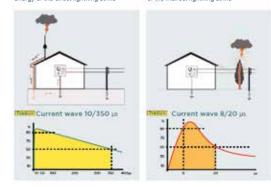
Ability to discharge lightning currents (10/350 μ s) and induced voltage surges (8/20 μ s). IEC 61643-11.

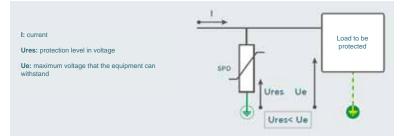
Type 2 / Class II


Ability to discharge induced voltage surges (8/20 μ s). Suitable for the second level of protection in supply distribution panels in which Type 1 protectors are installed, or for the first level of protection for applications not exposed to direct strikes and with no external lightning protection system. IEC 61643-11

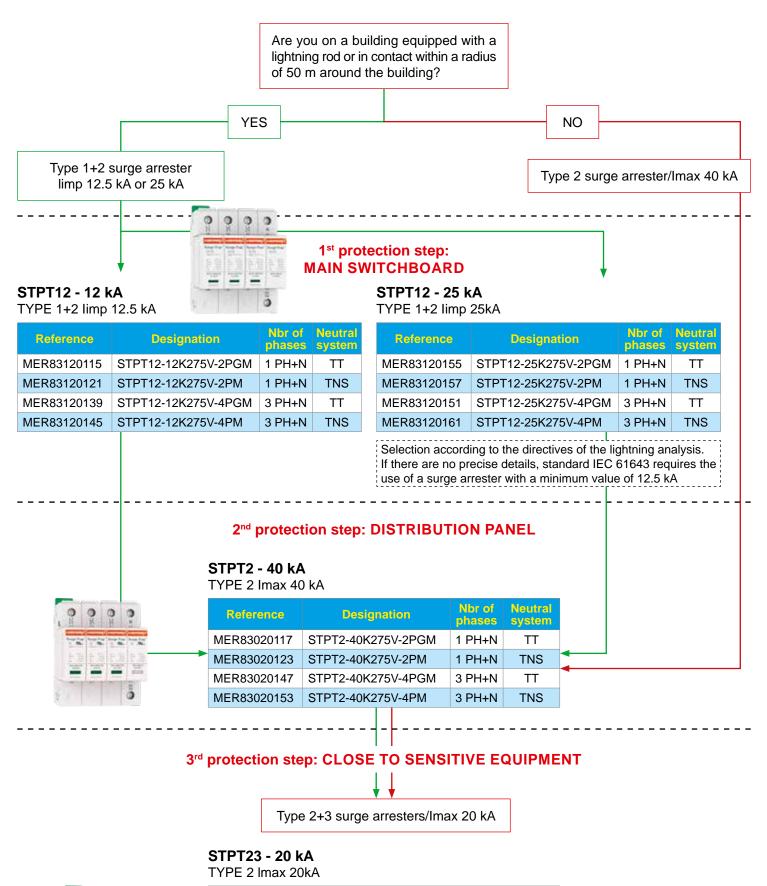
Type 2+3 / Class II+III

Ability to discharge induced voltage surges (8/20 µs), while offering very fine protection of sensitive equipment (1.2/50 µs). IEC 61643-11


Type 3 / Class III


For very fine protection of sensitive equipment (1.2/50 µs). Installation downstream of type 2 protection. IEC 61643-11.

Conduction Conduction or 10/350 µs simulates the energy of the direct lightning strike


Induction Induction or 8/20 µs simulates the energy of the indirect lightning strike

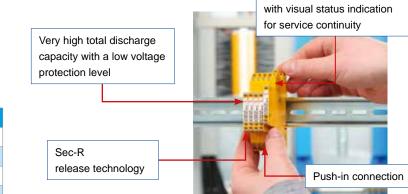
Energy network protection

Reference	Designation	Nbr of phases	Neutral system
MER83230113	STPT23-20K320V-2PGM	1 PH+N	TT
MER83230117	STPT23-20K320V-2PM	1 PH+N	TNS
MER83230129	STPT23-20K320V-4PGM	3 PH+N	TT
MER83230133	STPT23-20K320V-4PM	3 PH+N	TNS

PROCESSING LIGHTNING AND OVERVOLTAGE

Protection of process installations

			3	
	2		4	
CANopea #dodbus	DeviceWet DeviceWet GOOGO		5	
		achine power supplies secure system surge arrester according to EN Application For 400 V three-phase power supply - TNC For 400 V three-phase + N power supply - TT/TN		
	Modular Type 3 Reference DEH953200 DEH953201	C power supplies surge arrester according to EN61643-11 Application For 230 VAC single-phase - 2 poles For 24 VDC and AC single-phase - 2 poles		
	Data network p	TOTECTION		


Reference	Application
DEH929121	For 230 VAC single-phase - 2 poles
DEH929044	For wireless network antenna

For interface/analogue/field bus signals

2

BLITZDUCTORconnect, space-saving overvoltage protection for the process Compact 6 mm protection

Reference	Application	
DEH927224	Binary signal	
DEH927271	RS485 - Profibus DP/FMS - MODBUS	
DEH927222	Temperature measurement	
DEH927244	0-20 mA / 4-20 mA	

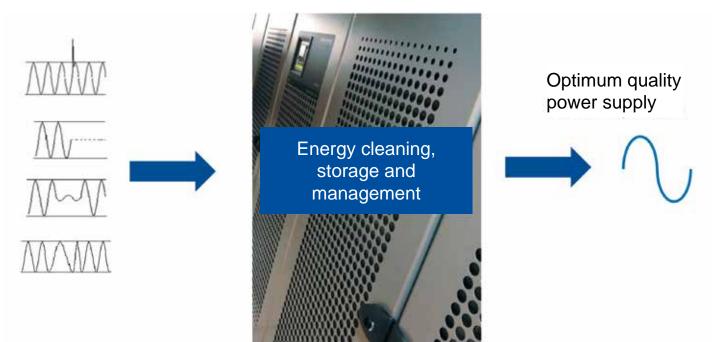
Socomec

Processing lightning and overvoltage with UPS (Uninterruptible Power Supply)

Problems: Causes and effects

Impurities:

Short interruptions Overvoltages Voltage dips Lightning Noise Harmonics Frequency variations Data corruption Premature wear of electronic components Component failure


Power cut:

Accidental events Short circuit Switching (on heavy loads) Overloads Weather events Loss of revenue Data loss Equipment damage

For example, a computer server can suffer up to 125 potentially destructive incidents/month (88% voltage fluctuations and transients):

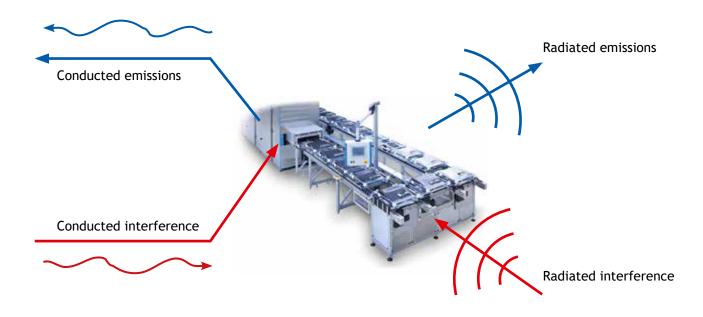
- Electrical noise and transients 63 incidents/month,
- Power failures 0.5 incidents/months,
- Voltage dips and drops 14.4 incidents/month,
- Overvoltages and overcurrents 50.7 incidents/month.

Why install a UPS?

ITYS range - Online - Tower format

Addition of extra batteries possible for extended autonomy

Reference	Power	Autonomy*	Connections
SOCITY2-TW010B	1000 VA/800 W	10 min	3 IEC 320 sockets
SOCITY2-TW020B	2000 VA/1600 W	17 min	6 IEC 320 sockets
SOCITY2-TW030B	3000 VA/2400 W	9 min	4 IEC 320 sockets - Terminal blocks
SOCITY2-TW060B	6000 VA/5400 W	13 min	Terminal blocks
SOCITY2-TW100B	10 kVA/9 kW	9 min	Terminal blocks
SOCITY2-TW110B	10 kVA/9 kW	10 min	Terminal blocks
SOCITY2-TW110B+	10 kVA/9 kW	30 min	Terminal blocks
* All outonomico divon oro for I	IDC with ZEN/ load		

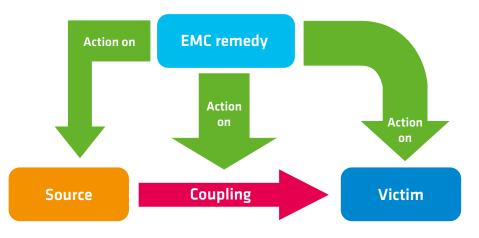


* All autonomies given are for UPS with 75% load.

EMC (ElectroMagnetic Compatibility) is the **capacity** of equipment or installations **to function satisfactorily** in their environments **without causing interference**.

There are 4 types of interference:

All electrical installations must comply with the EMC directive 2014/30/EU.

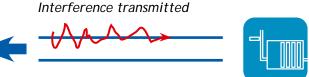

The limits for interference concerning electronic equipment integrated into electrical installations (e.g. machine) are set by the harmonised standards.

The generic standards are:

- EN 61000-6-1: generic standard covering immunity in the residential environment
- EN 61000-6-2: generic standard covering immunity in the industrial environment
- EN 61000-6-3: generic standard covering emissions in the residential environment
- EN 61000-6-4: generic standard covering emissions in the industrial environment

When faced with a problem of electromagnetic interference, a certain methodology is required. In theory, you should identify the **source** of the interference and control its **path** in order to protect the **victim** equipment.

In practice, action is possible in several places, as there are many **solutions** adapted to each situation.



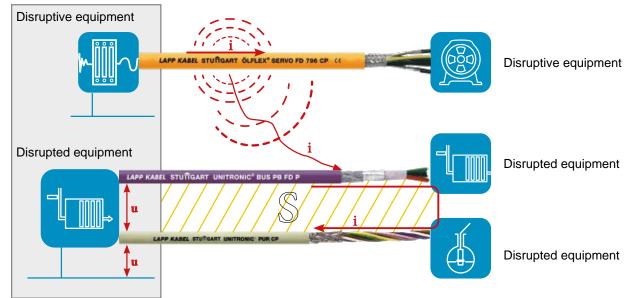
The evolution of technologies has made equipment more sensitive and therefore vulnerable to EMI damage. The wiring rules must be taken into account to avoid errors and therefore the risk of interference. In EMC, there are 2 propagation paths (coupling).

Coupling by conduction

Towards distribution network power supply

On a two-wire connection, a useful or parasite signal can move in two ways:

- in differential mode
- in common mode (via the earth)


In differential mode (example between two wires)

In common mode (example, between the wires and the earth)

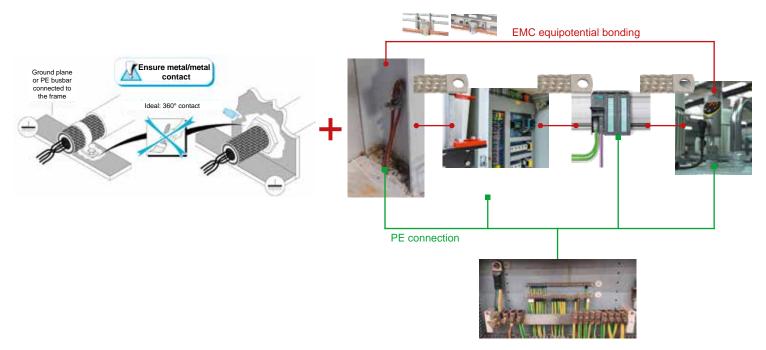
Coupling by radiation

In radiation, interference coupling can be created by an inductive effect.

A **parasitic current I** flowing in an electrical conductor creates a magnetic field which radiates around the conductor. If the sensitive cable forms a loop with a surface area S in a variable magnetic field, a voltage **u** appears on its terminals.

In radiation, interference coupling can be created by a capacitive effect.

Most cables today are shielded.


A non-zero capacity can exist between the electrical cable (disrupter) with another signal cable (sensitive) and another circuit close by, such as the earth and chassis ground.

A variable potential difference between these two circuits will generate the flow of a parasitic current and thus form a capacitor called a parasitic or stray capacitance.

The higher the frequency of the voltage on the terminals of the parasitic capacitance, the higher this parasitic current will be.

Shielding connection is vital in EMC.

Whatever the type of cable (motor, sensor, PLC, IP network), the shielding must be bonded **over 360° at both ends** on **equi-potential bonding** at high frequency with a low contact impedance.

Treatment of shielding in cabinets

To achieve an **excellent level of attenuation**, the shielding continuity system must provide 360° contact.

The shielding continuity system must **be mounted** as **directly as possible** on its **immediate ground plane** (back panel, DIN rail, etc.) without any galvanic couple constraint.

Treatment of shielding on sensor and motorisation junction box

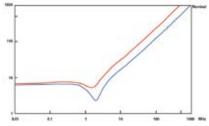
In practice, 360° can be achieved by **cable gland** type solutions at the entries to metal boxes and motor terminal boxes.

As mostly **high-frequency interference** must be eliminated, the shielding continuity system must offer the least resistance to parasitic currents. In EMC language, a low-impedance contact is required.

In addition, it will be noticed that the shielded cable has an important role in the assembly chain of a 360° shielding continuity system.

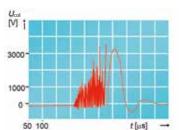
Depending on the frequency in Hz of the electromagnetic pollution, the shielding technology can impair the performances of the installation.

This is valid for power cables (e.g. motor) and data signal cables.


EMC performance of shielding

Type of cable	Radiated in LF < 1 MHz	Radiated in LF > 1 MHz
Aluminium sheet screen	•	
Tinned copper braid screen	00	•
Aluminium sheet screen + braid	99	99

The level of shielding coverage by braid must be > than 83% 34


Interference suppression in the electric actuators:

Eliminating overvoltages caused by operating a coil.

Switching off the power to a contactor coil causes overvoltages.

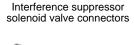
Given the high resonance resistance of the coil deprived of current, the vibration amplitudes can reach several kV and the raised voltages are around 1 kV/µs.

These signals make it necessary to connect protection devices at the point where they appear on the contactor coil. These devices prevent the formation of overvoltages at the point where they appear and protect the electronic elements that are sensitive to the voltage.

Overvoltage due to the operation of an auxiliary contactor coil not fitted with a 230 V, 50 Hz, 10 VA protection device

> Universal interference suppressors

New generation contactors with EMC management



3RT202xxx

Contactor interference suppressors

MUR2000685004400000 3RT2916

HIR933929100 MUR700041341000000

MUR26720

MUR26277

Improvement of the equipotentiality of the earths and exposed conductive metal parts

At high frequency, all round conductors have an impedance Z which increases with the frequency and may generate interference.

A meshed equipotential network composed of bonding conductors avoids this risk.

Cablet/bare copper

Tubular lugs

MEC740xxx

MEC7340171 MEC7341038

Prefabricated tinned copper braid earthing straps

TEKTMSxxx Available in 304L/316L stainless steel version

Earth clips:

Earth clip used to earth and improve the equipotential bonding of the exposed metal parts of wire cable trays and sheet metal cable trays.

MEC734198x

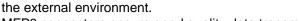
Machine cabinet environment metal duct

Ducts have a very useful reducing effect and are adapted to the field of automation drives. /!\ A metal duct is not designed to replace a high coverage shielded cable.

Ferrite and nanocrystalline toroidal core

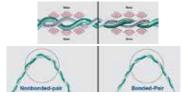
Passive components such as ferrite and nanocrystalline cores are used to block parasitic interference on low level cables such as field bus and instrumentation signal cables. This is a supplementary solution to shielding continuity systems. It all depends on the desired result in terms of immunity.

C0012xxxxxx


Adapting the right connections to your data equipment

Using good quality cables for your Ethernet and field bus networks increases immunity to pollution encountered in industrial environments. /!\ Cable shielding is not designed to replace an earth cable.

TELJ00026A4001


Shielded Ethernet cables and connectors

MFP8 connectors ensure good quality data transmission with full 360° shielding against electromagnetic interference.

Industrial quality cable with adapted shielding offering better protection against interference from

Shielded overmoulded leads with bonded pairs

Bonded-pair cables provide the required reliable performances for high availability and high resilience environments.

HAR09628xx

EMC industrial connections

Shielding continuity can be removed at a standard industrial connector. The electrical contact between the cover and the base is provided by a mechanical adaptation frame.

This assembly preserves a low impedance connection between the shielded cable and the metal enclosure.

Motor cables specific to variable frequency drive applications

Experience in the field proves that the new drive technologies necessitate specific requirements with regard to the quality of the shielded cable.

The geometric construction, insulation of high voltage conductors and shielding are the guar- Flexible shielded 3kV EMC LSZH cable for antee of quality in a good motor cable.

/!\ Shielding must be bonded at both ends of the cable.

variable frequency drives (VFD cables)

Switching enclosures for connection compliant with the EMC of variable frequency drives are equipped with shielding supports with a large surface area or clamps mounted on rails for

KNA151332

Electrostatic discharges

EMC switching enclosure

uninterrupted cable shielding.

Electrostatic discharges cause damage in electronic systems.

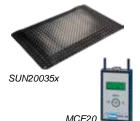
Static electricity generates high voltages, and a movement can generate a load of several thousand volts.

Insulating materials create electrostatic fields. They generate voltages close to the electrical circuits and damage the components when the current is discharged on the component.

Protection devices should therefore be used against these discharges in order to protect the sensitive elements of installations.

Conductive brushes

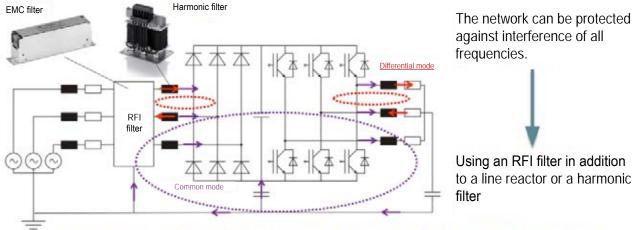
These brushes are composed of thousands of carbon or stainless steel fibres which are particularly effective in eliminating static electricity.



Antistatic mat

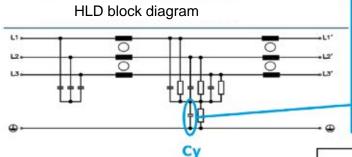
Anti-static bars generate ionic emissions which neutralise electrostatic charges during the manufacturing process.

The antistatic mat is resistant to chemical products and intensive usage and is designed to protect


Electrostatic field strength meter

Handy field strength meter with digital display used to measure electrostatic fields.

sensitive equipment against electrostatic discharges on production lines or workstations.



High and low frequency filter wiring diagram

LF interference will be mitigated by the line reactors and harmonic filters.

Leakage currents on high frequency filters (RFI)

Value of the capacity Cy with the resulting leakage current HLD 110 = 4,7µF I leakage = 29mA nominal / 280mA max HLD 710 = 0,68µF I leakage = 6,5mA nominal / 63mA max HLD 310 = 0,033µF I leakage < 0,4mA nominal / < 3,5mA max</td> HLD 810 = 0µF I leakage = 0 A

Nominal leakage current = value if max. voltage fluctuation between two phases does not exceed $\pm 10\%$ (in accordance with standard IEC 38 Wc) For other cases, take the max. leakage current value.

The maximum length of the cable supplying the motor to a filter is the sum of all the cable lengths connected to one or more variable speed drives.

	EN 5	(
	Class B										
4	EN 61800-3										
Filter ref.	C1	C2	C3								
HLD 110-500/x	50m	100m	150m								
HLD 710-500/x	25m	50m	100m								
HLD 310-500/x	5m	10m	25m								
HLD 810-500/x	5m	10m	25m								

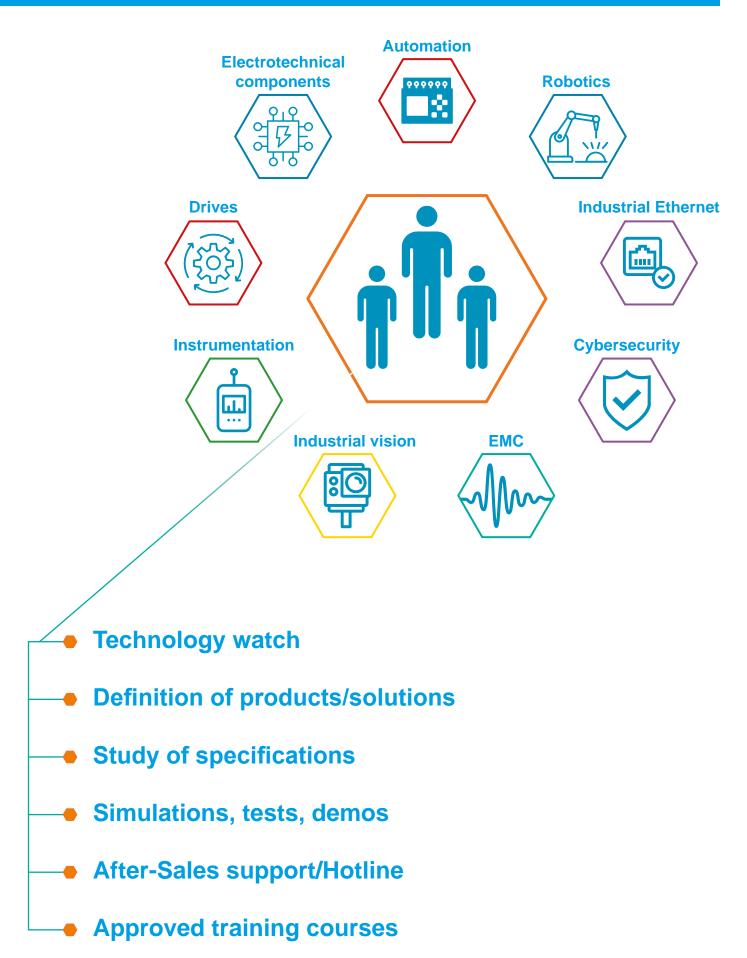
Table of maximum shielded cable lengths For the range HLD X10-500/x:

Signal downstream of converter with an all-pole SF4 filter.

No impact of the cable lengths on the quality of the signal

Customised transformer sizing

Application*:	Desc	ription of the lo	oad to s	supply:													
Products*:		Transformer						Autotransform	mer								
Power supply*:		Single- phase		Three- phase		Three- Single		Eco Energy									
Power*:		VA						KVA									
Voltages*:	Prima	ry(ies) (in V):			±	%	Seco	ndary(ies) (in \	±	%							
Description*:		Open- frame IP00		Covered IP21		Sealed IP54		Others, to be	Others, to be defined:								
Frequency*:		50/60Hz				Others, to be	e define	ed:									
Ambient temperature*:		35°/40°						Others, to be	e define	ed:							
Electrical	PRIM	ARY:					SECONDARY:										
protection:		Circuit breaker		Fuse		Disconnec- tor switch		Circuit breaker		Fuse		Disconnec- tor switch					
Temperature sensors:		Alarm: (NO contact	165°C	;)				Cut-off: (NC contact 180°C)									
Electrostatic screen:		YES						NO									
Tropicalisation:		YES						NO									
Rollers:		YES						NO									
Silent block:		YES						NO									


Additional information (Specific dimensions, desired distance between centres, special colours, etc.)

Information sheet for Cosys sizing: No determination will be possible without all of the information below.

	Transformer c	haracteristics:	
Name of transformer station:		Power in kVA:	
Number of transformers (if in parallel):		Primary U:	
Length of cable between Transformer/Main low voltage dis- tribution panel:		Secondary U:	
If KVA, subscribed power:		short circuit voltage in % (Usc%):	
Characteristi	cs of the MV network (inform	ation available from your energy su	pplier):
Short circuit power (Scc in MVA):		Energy counting signal frequency:	
Metering:	MV D LV D	'	,
	Environment	t of the room:	
Room ventilation:	□ air-conditioned	□ ventilated	□ ambient
Dust level:	□ low	□ acceptable	□ high
Humidity level:	□ low	□ acceptable	🗆 high
Maximum temperature:		Minimum temperature:	

OUR TEAMS

The right product with the best support.

												 			_								-
-		-			-							-	-	+	-								+
												 			_							_	-
																					_		-
				_											_							-	
				-					 						-								-
				_											_								-
															1								
-												-		+	-								-
-			 						 	 				 	_						_		
												-										-	-
-	$\left \right $								 					 +	-			 					
															_			 _			_		-
		-			-							-			-						-		
-	+				\rightarrow						_			+	+								-
-			 											 	_			 			_		
																							<u> </u>
-		-			-							-	-	+	-								-
-			 							 	_			 _	+			 			_		
																							<u> </u>
		+			-				 			-	-	+	+							-	-
-															+								-
<u> </u>			 											 _				 					
		-																					
-		-			-								-	+	+								-
-			 						 	 				 _	_			 			_		
-	+	\rightarrow			\rightarrow				 			-	-	+	+								-
-									 	 				 	-			 					
			 											 							_		-
		-												+	+								-
-	+		 						 	 				 +	+			 					
															_								-
		+		+	-							-	-	+	+								-
-	$\left \right $		 	+					 	 	_			 +	+			 					+
1																							1

					 				_										
									-										
			_		 		 		+						 	 			
			_		 				-						 	 			
	 		_		 		 	 							 	 			
								 	_	_					 				
									-										
			_						+							 			
		_				-			+										
	 		_						_										
	 		_																
					 					_									
						-			+		-								
	 								+										
			_		 		 	 	_						 	 			
	 		_		 		 		_						 	 			
	 		_				 		_	_					 	 			
									+										
			_						+	_						 			
		_				-			-										
	 _	_							+-										
	 		_												 				
					-	+			+	_									
						-			+	_									
									-										
		_				_			-										
	 		_		 														
	 				 					_									
	-		_			+			+	_									
		_				-			-										
		_							_									43	
	 						 	 	_						 				

The Technical Solution www.etngroup.com

DISTRIBUTOR IN

- Automation
- Electrotechnical components
- \bigcirc Instrumentation
- Industrial Ethernet
- Variable speed drives
- \bigcirc Industrial vision
- \bigcirc Robotics
- \bigcirc EMC

Your agency